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Abstract-An asymptotic analysis is applied in this work to study the fundamental behavior of thermal 
and flow fields in the vicinity of a wedge tip. The emphasis is placed on the physical conditions under which 
the temperature gradient of the flow field becomes singular at the wedge tip. These conditions are found 
to be sensitive to the thermal conditions imposed on the wedge surfaces. For natural convection problems, 
it is found that the r-dependencies of the field quantities in the near-tip region are determined by the 
eigenvalue problem for the temperature field, while the eigen-states for the flow velocities are determined 
by a boundary value problem. The reverse situation exists for forced convection problems. A detailed 
discussion is also provided for the extension of the near-tip solutions to more complicated problems in 

conjunction with the use of finite element methods. 

1. INTRODUCTION 

WHEN GEOMETRICAL curvature of the physical bound- 
ary or the boundary conditions imposed on an engin- 
eering system have abrupt changes, singularities may 
be developed in the neighborhood of discontinuities. 
A typical example is an isotropic Fourier solid con- 
taining a macrocrack subjected to an incoming heat 
flux or remote temperature gradient [l, 21. Due to the 
abrupt change of geometrical curvature at the crack 
tip, the boundary condition presents a mixed type 
along the crack line and the radial component of the 
temperature gradient (T,,) presents an r-‘/‘-type of 
singularity at the crack tip as the radial distance I 
measured from the crack tip approaches zero. The 
power of singularity of the temperature gradient is 
consequently defined as one-half (l/2), which is indeed 
the negative value of the r-dependency of the near- 
tip temperature gradient. When the effect of thermal 
conductivity further comes into play, however, the 
power of singularity of the temperature gradient at 
the crack tip may change capriciously. For a solid 
medium with orthotropic thermal conductivity [l], as 
an example, it has been found that the temperature 
gradient T,, at the crack tip behaves singularly only if 
the ratio of kR = k,/ko > l/4. The power of singularity 
of T,, in this domain is found to be (2Jk, - 1)/2Jk,, 
which strongly depends on the ratio of the thermal 
conductivities in the principal directions of the 
material orthotropy. When the value of k, is equal to 
ko, the ratio of kR reduces to one and the power of 
singularity being half (l/2) for the isotropic solid is 
retrieved. For strong directional media with k, B ke, 
the ratio of k,, approaches infinity and the power of 
singularity has a limit value of one. Other effects such 
as inhomogeneity and temperature dependence of the 
thermal conductivity were also studied [3] recently 

which resulted in different singular behavior of the 
heat flux vector from that of the temperature gradient 
at the crack tip. Obviously, a detailed understanding 
on the singular behavior of the thermal field around 
discontinuities is important for assessing the thermal 
and mechanical performance of an engineering 
system. Especially for those with defects such as cracks 
developed through service years, such a knowledge 
directly leads to the estimate of energy intensification 
[4] in the vicinity of cracks and it is an essential com- 
ponent in the post-damage analysis for engineering 
systems. 

Singularities would also be present in problems of 
natural convection with discontinuities in either 
geometry or thermal loading. Natural convective 
loops [5-81 are a typical example where boundaries 
with different slopes intersect at the corner of a con- 
tainer. A straight boundary subjected to partial heat- 
ing [9-121, on the other hand, is another example 
where distributions of surface heat flux present dis- 
continuities. It has been found that the heat transfer 
characteristics of the system, such as the nonuniform 
distributions of the local Nusselt number, are signi- 
ficantly altered by the presence of discontinuities in 
geometry and/or thermal loading. The wedge flow 
problems (refer to, for example, ref. [ 131 for detailed 
references in the related research) present a geo- 
metrical singularity at the wedge vertex but studies in 
the past mainly focused attention on the formation of 
boundary layers while a detailed study on the singular 
behavior of the fluid flow has never been made. 

While the existing research develops fundamental 
understanding of the global behavior of natural con- 
vection, the present work focuses attention on the 
local behavior of thermal and flow fields in the vicinity 
of the singular point where abrupt changes in geo- 
metry and thermal loading conditions exist. The 
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NOMENCLATURE 

A. B coefficients in equation (24) u flow velocity in the r-direction fm s- ‘] 

c, n = 0, 1, 2,. . . ; coefficients in front of u,, E’~ i = l-7 ; nodal velocities in the core 
eigenfunctions element [m s- ‘1 

CP heat capacity of fluid [W s kg- ’ “Cm ‘1 u angular distribution of flow velocity in the 
D, E coefficients in equation (24) r-direction 

f energy-bearing capacity of lluid [w m- ‘1 o flow velocity in the %-direction fm s- ‘1 

F, i = I, 2 ; coefficients in equation (24) V angular distribution of flow velocity in the 

9 gravitational constant [m s-‘1 %-direction. 
h heat transfer coefficient [W m ’ 'C- ‘1 
h’, fr” thermal energy carried by Sow 

velocities [W s m” “1 Greek symbols 

Hi i = I-6 ; coefficients, equation (24) wedge angle [deg] 
k isotropic thermal conductivity ; function of 01, /?” = (n+2a)(n+6c()/4~’ 

twm - ’ ‘C ‘1 I- time function 
k,., kH principal values of thermal A function of Hi defined in equation (24) 

conductivities in the r- and %-directions & thermal expansion coefficient of fluid 
[W rn-^ ’ “C- ‘I [“c- ‘1 

k_, ratio of p~ncipal values of thermal Vi i = 1, 2 ; coefficients defined in equation 
conductivities, k,/ki, (24) 

K x = T, u, v ; intensity factors for field 6 polar angle [deg] 
quantities s 0 angular distribution of temperature 

n 0,1,2 ,.,., positive integers K thermal diffusivity [m” s- ‘1 

4 heat flux component normal to the &, ,?. lowest eigenvalues, the r-dependency 
physical boundary [W mm ‘1 API n th eigenvalue 

r radial distance measured from the wedge p, [ Lame coefficients of viscosity [kgm- ’ s- ‘1 
tip or crack tip ]m] v kinematic viscosity [m’s_ ‘f 

ri i = 1,2 ; functions of #? defined in equation P fluid density [kgmm3]. 

(24) 
t time [s] 
7- temperature [‘Cl Subscripts and superscripts 

Ti i = 1-7 ; nodal temperature in the core partial differentiation with respect to i 
element [“Cl k quantities at the wedge tip. 

emphasis is placed on the physical conditions under 2. CONVECTIVE FLOW PATTERN AROUND 

which the physical quantity may present a singular A WEDGE TIP 

behavior. In particular, the natural convection flow 
pattern in the vicinity of a wedge tip subjected to 
different thermal boundary conditions on the wedge 
surfaces will be studied. In the vicinity of the wedge 
tip, where discontinuities are present in both geometry 
and thermal loading, the asymptotic analysis em- 
ployed in previous studies [l-4] will be extended to 
characterize the fundamental behavior of temperature 
and flow velocities. It will be demonstrated that two 
unique features result in the neighborhood of the dis- 
continuity. (1) In momentum transfer, the viscosity 
effect dominates over the inertia effect. In energy 
transfer, on the other hand, the effect of heat con- 
duction dominates over that of heat convection by 
flow velocities. (2) The fundamental behavior of the 
thermal field is governed by an eigenvahe problem 
while that of the flow field is governed by an associated 
boun&ry value problem. These situations essentially 
lead to linearizations of the field equations and facili- 
tate an analytical study on the singular behavior of 
the thermal and Aow fields in the near-tip region. 

The first problem under consideration is the flow 
pattern induced by free convection in the vicinity of 
a wedge tip. As shown previously [14], the polar 
coordinates (r, 0) are more convenient to be used for 
the study of near-tip behavior. The three-dimensional 
configuration of the wedge as well as its two-dimen- 
sional idealization are shown in Fig. 1. Due to a non- 
homogeneous temperature rise in the flow field, 
additional momentum transfer is induced by the 
buoyancy force and the momentum equation is 

u,+uu,+(v/r)u,-v’/r = v[u,,+(l/r)u, 

-u/r2+(l/r2)~~~-(2~r2)~~]+g~~sin(%) 

v, + uv, + (v/r)v8 + m/r = v[v,, + (I/r)v, 

-v/r2+(l/r2)v~L)+(2/r2)uO]+g~Tcos(U) (1) 

where u and v are the velocity components in the r 
and % directions, T the temperature above the ref- 
erence level, E the thermal expansion coefficient of the 
fluid, and subscripts denote partial differentiations. In 
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1 two-dimensional 

\ 

T,=O 
idealizations in the 

u=v=o 
vicinity of wedge-tip 

bA;; 
T=O, u=v=O 

FIG. I. A wedge subject to different thermal conditions at its 
surfaces and the polar coordinates centered at the wedge tip. 

addition, the velocity components have to satisfy the 
continuity equation 

U, + (l/r)ve = 0 (2) 

which assumes incompressibility for the fluid flow. 
The temperature rise Tin equation (1) is governed by 
the conservation of energy in the process of momen- 
tum transfer. Mathematically, this is expressed by 

jr, f u T, + (v/r) TB 

= (lltc)tT,~+(Ilr)T,+(I/r*)T,I (3) 

with K being the thermal diffusivity of the fluid. In 
these field equations, as usual, we have employed the 
Boussinesq approximation for the flow density and 
assumed the absence of energy dissipation [14]. The 
boundary conditions at the wedge surfaces must be 
specified in dete~ining the velocity and tem~rature 
fields governed by equations (1x3). For illustration, 
we consider 

T=O at B=O 

To=0 at @=a (4) 

for the thermal field and nonslip conditions 

u=v=O at e=Oanda (5) 

for the flow field. The wedge angle a is taken to be in 
the domain from 0 to K without loss of generality. The 
homogeneous type of boundary conditions con- 
sidered here needs to be discussed. For the thermal 
and flow fieids in the near-tip region, it has been 
noticed [l-4] that the magnitude of the field quantities 
specified at the boundaries only influences the intensity 
of the physical quantities at the discontinuity while 
fundamental characteristics such as the spatial dis- 
tributions in the near-tip region are governed by the 
corresponding homogeneous conditions. It is in this 
sense that the near-tip behavior obtained by equations 

(4) and (5) is applicable to a wedge subject to an 
incoming heat flux (Ts = q at 8 = a for example) or 
boundary suction or injection (u = ~1~ at f? = a). 

Because the thermal and flow fields in the vicinity 
of the wedge tip are of major concern, an asymptotic 
analysis is first made to identify the dominant effects. 
The continuity equation (2) indicates that the r-depen- 
dency of the flow velocities u and v must be the same, 
i.e. 

(u(r, 8, t), u(r, 8, 0> = ti+ 1 (u(f9, WWW (6) 

where a product form for the velocity field has been 
assumed and the parameter A is temporarily unknown. 
For the flow field with gouged velocity at the wedge 
tip at r = 0, however, a constraint of 

1+1>0 (7) 

must be imposed. Substituting equation (6) into equa- 
tion (I), the r-dependency for the terms involved can 
be categorized as follows : 

ut, 0, - $+I 

MU,, vu&, v*/r, MU,, vu&, uvlr N r2’+ ’ 

and 

v,,, q/r, v/r=, vee/r2, us/r2 N rim I. (8) 

Multiplying all the terms in equation (8) by r’-I, the 
terms proportional to 8’ ‘, r*‘+ ‘, and $- ’ respec- 
tively become r2, @+‘, and r”. In the near-tip region 
with r a~~roac~~~ zero, therefore, the time derivative 
terms a, and v, will vanish at a faster rate than the 
terms proportional to r” in equation (8) and they can 
be neglected in the asymptotic expansion of the field 
equation. Moreover, due to the constraint of equation 
(7) for the finiteness of the flow velocity at the wedge 
tip, the value of A + 2 must be greater than one, which 
implies that the terms proportional to rza+ ’ in equa- 
tion (8) will also vanish at a faster rate in comparison 
with those proportional to r” when r approaches zero. 
From these arguments, it is informative to conclude 
that the viscous effect in equation (1) dominates over 
the inertia effect in the near-tip region with r -+ 0 
and the asymptotic expressions for the momentum 
equation can be written as 

v[u,,+(1/r)u,-u/rz+(llrz~u~8 

- (2/r2)vs] +gaTsin (0) = 0 

v[v~~+(l/r)v~-v/rz+(l/r2)v~~+(2/r~)u~] 

+gETcos (e) = 0, for r --+ 0. (9) 

Based on equation (6), the r-dependency of the 
temperature can be determined immediately from 
equation (9) : 

T(r, 8, t) N + ‘or. (10) 

Physically, this implies that the buoyancy and viscous 
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effects in equation (9) are equally important in the 
process of natural convection. Based on equations (6) 
and (10) for the flow velocities and temperature, the 
relative contributions of energy transfer by convection 

and conduction in equation (3) can be analyzed. Simi- 
lar to the momentum equation, the r-dependency of 
the terms involved in the energy equation (3) can be 
summarized as follows : 

and 

T,r, TR/r, TJr’ - rA:-‘. (11) 

Multiplying all the terms in equation (11) by r3-‘, 
similarly, the terms proportional to r’- ‘, r2’- ‘, and 

ti- 3 respectively become proportional to r2, r’+ ‘, and 
r”. Due to the constraint of equation (7) for the flow 
velocity, we may observe that the value of i + 2 must 
be greater than one (A+2 > 1) and in the vicinity 
of the wedge tip with r approaching zero, the terms 
proportional to r’- 3 in equation (11) for heat con- 
duction dominate over those for heat convection. The 

asymptotic form of the energy equation in the near- 
tip region, therefore, is simply a Laplace equation for 

heat conduction : 

T,,+(l/r)T,+(l/r2)ToH = 0, for r -+ 0. (12) 

Through the asymptotic analysis made in the near- 
tip region, in summary, the momentum and energy 
equations in the vicinity of the wedge tip are repre- 
sented by equations (9) and (12). The velocity com- 
ponents u and v and the temperature T in the flow 
field are to be determined by satisfying the boundary 
conditions (4) and (5) imposed on the wedge surfaces. 
By substituting the product forms for the velocities 
and temperature shown by equations (6) and (10) into 
equations (4), (5), (9), and (12) due to the equi- 
dimensionality in the space variable r, the governing 

system can be expressed in terms of the angular dis- 
tributions U(6), V(0), and o(0) : 

088+(i-1)=0 = 0 (13) 

U,,+[(3,+l)2-1]U-2V0+(ge/v)Osin0 = 0 

V,,+[(n+l)=-l]V+2U,+(g&/v)OcosB = 0 (14) 

subject to the boundary conditions 

O(0) = 0, @@(cc) = 0 (15) 

for the thermal field and 

U(0) = U(a) = 0, V(0) = V(U) = 0 (16) 

for the flow velocity. They are valid for any function 
of r(t) which implies that the near-tip behavior of the 
thermal and flow fields are essentially the same for 
both transient and steady-state problems. The asymp- 
totic formulation made so far in the near-tip region 
renders an eigenvahe problem to be solved for the 
eigenvalues 1. The functions U(0), V(6), and o(0) 

appear as the eigenfunctions in such a formulation. 
After the eigenvalue i is successfully found, the r- 
dependency of the velocity and temperature fields can 
be determined immediately by equations (6) and (10). 

In view of equations (13) and (14), we notice that 
a situation of weak coupling between the thermal 
and flow fields results. Mathematically, this facilitates 

determination of the temperature field from equations 
(13) and (15) in an independent fashion. The results 

for the eigenvalue I and the eigenfunction 0 can then 

be substituted into equations (14) and (16) to deter- 
mine the eigenfunctions U(H) and V(Q). Equation (13) 
has the following form of solution : 

O(0) = C, cos(3L- l)B+C,sin(&l)Q. (17) 

Employing the boundary conditions (15), the co- 
efficient C, is zero and the eigen-equation 

A”_, =Pp (18) 

is obtained for n = 0, 1,2,. , all the positive integers. 
The near-tip temperature, from equation (10) and the 

principle of linear superposition, is thus 

T(r,O) = C0r”~~‘sin(~,-1)0+C,r”~~‘sin(~,-1)8 

+C2r+‘sin(J.-l)Q+... (19) 

with Aj < i, for j < k according to equation (18). In 
the near-tip region with r approaching zero, not all 
the terms in (19) are needed for describing the near- 
tip behavior of the thermal field. By further inspection 
in the limit 

the terms proportional to r*h will approach zero at a 
faster rate than those proportional to r’j as r -+ 0. In 
view of equation (19), this implies that the first term 
indeed dominates over the subsequent terms in the 
near-tip region with r approaching zero and the 

asymptotic expression reads as 

T(r, 0) - C,,r’o~ ’ sin (i, - l)e, for r + 0 (21) 

where A, = (n+2c()/2c( according to equation (18). 
Note that the value of /lo+ 1 = (x+4~~)/2tl, which is 
positive definite for any positive value of CI and the 
kinematic constraint of equation (7) for the bounded 
velocity field is automatically satisfied. Also, equation 

(21) indicates that only the lowest eigenvalue 1, 
is needed as far as the near-tip behavior of the 
temperature field is concerned. The corresponding 
temperature gradient T, is 

T, - C,(n/2c()r(“- 2z)i20 sin (n0/2cr), for r -+ 0 (22) 

which presents a singularity at r = 0 for c( > 7112. For 
the value of cz E [0, n/2], both the temperature and its 
gradient in the r-direction are bounded at the wedge 
tip at r = 0. For the value of tl E [n/2, n], the tem- 
perature is bounded at the wedge tip while the power 
of singularity of the temperature gradient T, is 
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FIG. 2. Power of singularity (2a-x)/2a of the tempera- 
ture gradient varying as a function of the wedge angle, 
7r/2 < a Q R. The case with temperature-gradient-specified 

condition at B = a. 
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velocity vector is bounded at the wedge tip with r = 0. 
Also, because the value of I,, is positive definite, the 
vorticity vector of the flow field [0, 0, u, - u,Jr] at the 
wedge tip is bounded as well. The angular distri- 
butions U(e) and V(e) are determined from the 
eigen-mode of the temperature field. According to 
equation (21) with the coefficient Co normalized with 
v/g&, the momentum equation (14) in the near-tip 
region becomes 

U,, + fl 2 U- 2 V, = -sin (710/2a) sin (0) 

VBe+B2V+2UB = -sin (7&/2a) cos (0) (23) 

where the value of 1, = (n +2a)/2a has been used and 
the parameter 8’ = (n+2a)(n+6a)/4a2. This set of 
coupled ordinary differential equations has to be 
solved simultaneously by satisfying the nonslip 
boundary conditions (16). Rather than an eigenvalue 
problem, it constitutes a boundary value problem to 
be solved for U(e) and V(e). The procedure leading 
to the solutions is lengthy but fundamental [15] and 
we only present the final results here 

u(e) = C, cos (r ,@ + C2 sin (r ,O) + C3 cos (r,O) 

+C,sin(r,B)+Dcos(~,8)+Ecos(~,@ 

v(e) = C,F, sin(r,B)-C,Ficos (r,e) 

+ C,F, sin (r28) - C,F2 cos (r,O) 

+Dsin(q,@-Esin(q,Q, 

in which 

(2a - 2)/2u. Figure 2 shows the variation of the power 
of singularity of T, vs the wedge angle a. When 
the value of a approaches 71, the power of singularity 
approaches a limit value of one-half (l/2). For various 
values of a, the corresponding eigenfunctions for the 
angular variation (0) of the near-tip temperature in 
the respective domains of 8 E [0, a] are shown in Fig. 
3. They are basically the functions of sin (n8/2a) 
shown in equation (22). When the wedge tip tem- 
perature gradient switches from a regular to a singular 
behavior at a = a/2, no special feature is observed. 
Note that the asymptotic analysis given here can only 
provide the fundamental characteristics of the tem- 
perature field in the vicinity of the wedge tip. The 
amplitude C,, of the eigenfunctions in equations (21) 
and (22), for example, depends on the magnitude of 
the temperature and heat flux imposed on the wedge 
surfaces which cannot be determined from the present 
formulation of eigenvalue problems. 

Similar to the thermal field, determination of the 
flow field in the vicinity of the wedge tip includes the 
r-dependency and angular distributions of the velocity 
field. According to the result of 1, = (7r+2a)/2a 
obtained from the dominant term in the thermal field, 
the r-dependency of the velocity field in the near-tip 
region is I,+ 1 = (~+4a)/2a according to equation 
(6). Because the value of a is always positive, the 

FIG. 3. The eigenfunctions 0 of temperature in the near-tip 
region for a = x/4, rr/2, and 3x/4. The case with temperature- . ^ . . ^ 

ANGLE, RAD 

gradlent-specltied condltlon at tJ = a. 

r, = [(/32+2)-2(82+1)‘/2]‘~2, 

r2 = [(fi2+2)+2(fi2+1)‘/2]‘/2. (24) 

Their graphical representations are shown in Figs. 4- 

C, =(H~Hs-H&~)/& C2=W,Hs--H3H4)/4 

A = H, H, - H,H,, c3 = -(D+E)-C,, 

C, = - (F,IF,)C,, H, = cos(r,a)-cos(r2a), 

Hz = sin(r,cr)-(F,/F,) sin(r2a), 

H, = -Dcos(q,a)-Ecos(~,a)+(D+E)cos(r,a), 

H, = F, sin(r,a)-F,sin(r,a), 

H, = F, [cos(r2a)-cos(r,a)], 

He = Esin(q,cr)-Dsin(q,a)+(D+E)F,sin(r,a), 

D = W@'-d-2rldl, 

E= -1/P(82-d+~t/2)lr 

q, = A-l, t/2 = A+l, A = n/2u, 

F, = (j?‘-rf)/2r,, Fz = (j?‘-r:)/2r2, 

and 
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2E6 buoyancy effects on the flow velocities are thus more 
> T 

c( = -n/4 pronounced. 

-5E51 , 
0.000 0.500 1.000 

ANGLE, RAC 

FIG. 4. The angular distributions of flow velocities for 
r* = n/4. The case with temperature-gradient-specified con- 

dition at 8 = a. 
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3. SINGULARITY OF THE TEMPERATURE 

GRADIENT 

The fundamental characteristics of the temperature 
gradient in the vicinity of the wedge tip obviously 
depend on the thermal boundary conditions imposed 
on the wedge surfaces. In order to develop more 
understanding of the singular behavior of the tem- 
perature gradient in the near-tip region, we further 
consider an energy-balance condition 

- kT”/r = ,f( T, u, v) at 0 = tl (25) 

at the top wedge surface while the zero-temperature 
imposed on the bottom surface of the wedge 

T=O at 0=0 (26) 

remains the same. The function f in equation (25) 
specifies the energy-bearing capacity of the fluid adja- 
cent to the top wedge surface which is, in general, a 
complicated function of temperature and flow vel- 
ocities. In parallel to the asymptotic analysis made so 
far, it can be first expanded in a Taylor series 

ANGLE, RAD 
f(T,u,tl) =fo+hT+h’u+h”u+O(T”,u”,d’) (27) 

FIG. 5. The angular distributions of flow velocities for 
CI = z/2. The case with temperature-gradient-specified con- with n 2 2 and fO, h, h’, h” being constants. By sub- 

dition at 0 = a. stituting the asymptotic forms for the flow velocities 
and temperature, equations (6) and (lo), into (25) 

2E7 - 
and (27) and taking the limit of r -+ 0, we observe that 

> 
the conductive term kTs/r in equation (25) and the 

2 
‘convective’ term hT in equation (27) dominate the 
near-tip behavior while the other terms involving flow 
velocities vanish at faster rates. In the near-tip region 
with r approaching zero, therefore, the asymptotic 
form of the boundary condition (25) reads as 

-kT*/r=hT at Q=cr, forr+0 (28) 

-2E7 I 
0.000 1.500 3.000 

ANGLE, RAD 

FIG. 6. The angular distributions of flow velocities for 
c( = 3n/4. The case with temperature-gradient-specified con- 

dition at 0 = a. 

6 for various values of the wedge angle CL. Note that 
with the same eigenfunction 0 for temperature in 
equation (23), the amplitudes of U(0) and V(0) for 
the flow velocities for CL = x/4 and 3n/4 are several 
orders of magnitude larger than those for CI = 7c/2. 
For the case with tl = n/4, the larger amplitude is 
due to reflection of flow velocities between the wedge 
surfaces which essentially results in vortex formation. 
For the case with a = 3n/4, on the other hand, the 

and the constant h appears to be the overall heat 
transfer coefficient. The analysis made in the follow- 
ing, therefore, is to study the effect of thermal con- 
ductivity k of the wedge medium and the heat transfer 
coefficient h of the fluid on the singular behavior of 
the temperature gradient. Because a weak coupling 
situation exists between the thermal and flow fields, 
consideration of different thermal boundary con- 
ditions on the wedge surfaces does not cause any 
additional difficulty. With the product form for the 
near-tip temperature shown by equation (lo), the 
boundary conditions (26) and (28) are expressed in 
terms of the O-function : 

kOo+hO=O at Q=a 

O=O at Q=O. (29) 
larger amplitude is induced by the singularity of the 
temperature gradient at the wedge tip. A large value 

The solution for o(0) is still the same as that shown 

of the temperature gradient implies an intensified heat 
by equation (17) while the eigen-equation becomes 

flux supplied thereby into the fluid volume, and the (A-l)cos[(L-l)or]+(h/k)sin[(L-l)ol] = 0 (30) 
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in this case. Similarly, the coefficient C, in equation 
(17) is zero. The lowest eigenvalue l,, depicts the near- 
tip behavior of the thermal field and in the present 
case, it also depends on the thermal properties (h and 
k) of the system in addition to the geometrical factor 
CL The solution of equation (30) for the lowest eigen- 
values 1 can be found by the Newton-Raphson 
method [16] and Table 1 shows the results for some 
typical values of h/k and CL Due to the strong effect 
of thermal properties, we notice that singular behavior 
of the temperature gradient may not exist at the wedge 
tip for wedge angles greater than n/2. For the cases 
with c( being 3a/4 and h/k being 1 and 3, for example, 
the values of ,I- 1 are greater than 1 and the value of 
1-2 is consequently greater than zero. Because the 
value of I - 2 (refer to equation (10)) is essentially the 
r-dependency of the temperature gradient T, in the 
near-tip region, a positive value of I- 2 implies a zero 
value for T, as the value of r approaches zero. The 
singularity of temperature gradient at the wedge tip, 
therefore, is absent in these cases. Analytically, this 
critical situation can be represented by the condition 
of 

I-2=0, 

or referring to equation (30) 

(31) 

h/k = -cos (a). (32) 

Figure 7 graphically presents this condition. The value 
of 1-2 is positive in the region above the curve and 
the temperature gradient T, vanishes as r -+ 0. Singu- 
larity of the temperature gradient exists in the region 
below the curve and the power of singularity is 2-1 
with I being the lowest eigenvalue satisfying equation 
(30). The eigenfunction O(0) in this case is simply 
sin [(A - l)tI] which is displayed in Fig. 8 for rep- 
resentative values of h/k and 01. The values of h/k for 
a being x/4, n/2, and 37~14 are respectively 3, 1, and 0.5 
and the corresponding eigenvalues 1 (refer to Table 1) 
are 4, 2.39577, and 1.88494. The effects of thermal 
properties (h/k) and geometrical factor (a) are 

Table 1. The lowest eigenvalues A satisfying the eigen- 
equation (28) 

The lowest 
OL values h/k eigenvalue 1 

7114 0.1 3.06171 
0.5 3.27541 
1.0 3.48468 
3.0 4.00000 

s/2 0.1 2.05989 
0.5 2.24340 
1.0 2.39577 
3.0 2.67571 

3x/4 0.1 1.72485t 
0.5 1.88494t 
1.0 2.00000 
3.0 2.17491 

t Cases with A - 2 negative and the singularity of the tem- 
perature gradient (TJ at the wedge tip existing. 
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FIG. 7. The envelope for the singular temperature gradient 
at the wedge tip. Representation in terms of the thermal 

properties h/k and the geometrical factor a. 
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FIG. 8. The eigenfunctions 0 of temperature in the near-tip 
region for a = n/4, n/2, and 3x/4. The case with energy- 

balance condition at 6 = a. 

implicitly implemented in the eigenvalue 1. When the 
wedge angle a approaches a value of n, the wedge 
becomes a flat plate and the singularity of the tem- 
perature gradient, according to equation (32), exists 
at the wedge tip for the system with finite but nonzero 
values of h and k. 

The corresponding flow velocities induced by natu- 
ral convection in the near-tip region are governed by 
the following equations : 

U,,+B’U-2V0 = -sin[(1-1)0]sin(Q 

V0/ee+/32V+2UB = -sin[(1-1)8]cos(6) (33) 

with the eigenfunction sin (rr8/2a) for temperature in 
equation (23) replaced by sin [(A- l)e] for the present 
case. The value of A in equation (24), therefore, is 
replaced by (2 - 1) while the rest of the results remain 
the same. Figures 9-l 1 display the results of equation 
(33) for U(0) and V(0) for various values of h/k and 
u. Basically, they are similar to those shown in Figs. 
4-6 but the amplitude of the functions are higher for 
u = 7114 and n/2 and lower for u = 3x14. 

4. APPLICATION OF THE NEAR-TIP 

SOLUTIONS 

The asymptotic analysis we have made so far is 
useful in revealing the fundamental behavior of tem- 
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FIG. 9. The angular distributions of flow velocities for 
a = n/4. The case with energy-balance condition at # = a; 

h/k = 3.0 and 1 = 4.0. 
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FIG. 10. The angular distributions of flow velocities for 
~1 = n/2. The case with energy-balance condition at 0 = a; 

hlk = 1.0 and L = 2.39577. 
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FIG. 11. The angular distributions of flow velocities for 
a = 3x/4. The case with energy-balance condition at @ = a ; 

h/k = 0.5 and 1 = t .88494. 

of the physical quantity. Yet, a quantitative criterion 
for the necessary number of elements being used in 
relation to the convergence of numerical solutions is 
still absent. Moreover, in employing adaptive algor- 
ithms based on the change of gradients of physical 
quantities for generating a finer mesh for convergence, 
the presence of a singularity may consume all the newly 
generated elements/nodes and locks up the adaptive 
process. The temperature gradient shown by equa- 
tions (22) or (32) is a typical example. 

The use of the asymptotic solutions obtained in the 
vicinity of the singularity could be a practical means 
to overcome such difficulties. In the neighborhood of 
the wedge tip, as shown in Fig. 12 where quadrilateral 
isoparametric finite elements with 12 edge nodes are 
employed for illustration, the asymptotic solutions for 
temperature and flow velocities can be implemented 
on node Nos l-7 : 

ui = v0 + KJg.s/v)rf+ 4a)‘2r V(f?J for i = 1-7, (34) 

where the coordinates of r,, and Bi for the ith node 
have been substituted into the near-tip solutions 
obtained in equations (21) and (24). Instead of 
increasing the number of elements/n~es toward the 
singularity at the wedge tip for the required con- 
vergence and accuracy, the circumference of the circle 
with radius r. is the new implicit boundary where 
the singular behavior of temperature ( Tj) and/or flow 
velocities (ui and vi) obtained analytically are 
implemented. The numerical effort is then placed on 
(1) the compatibility of the special core element used 
in the vicinity of the singularity and the conventional 
QUAD-12 elements used in the rest of the flow area 
where nonlinear effects are important and (2) the 
study on the sensitivity of numerical solutions in 
relation to the radius r. selected in equation (34). 
Along with the nodal temperature and flow velocities 
at all nodes in the flow discretization, the intensity 
factors KT, K,,, and K, are obtained as an entirety. 
From a theoretical point of view, the use of singular 
core elements could significantly increase the efficiency 

perature gradient and flow velocities in the vicinity of Conventional 
the discontinuity. When departing from the discon- QUAD- 12 
tinuity, however, the inertia effect in momentum 
transfer and heat convection in energy transfer gradu- 
ally become important and the nonlinear behavior in 
the transport processes needs to be considered. In the 
absence of a singularity, numerical solutions such as 
finite element or finite difference methods have been 
demonstrated successfully and widely used in 
research. In the presence of a singularity, however, a 
dense mesh pattern containing a lot of discretizing 

elements or nodes must be used in the neighborhood 
of the singularity in order to capture the rapid change 

FIG. 12. me concept of core element with impIemen~tion 
of near-tip solutions at node Nos l-7. 
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of numerical computations since the singular behavior 
has been analytically implemented when the discon- 
tinuity is closely approached. There is no need to use 
a lot of elements/nodes to capture the rapid variations 
of physical quantities thereby. In linear elastic fracture 
mechanics where a singularity exists at the crack tip in 
deformation, the advantage of employing the singular 
core elements in numerical computations has been 
successfully demonstrated by both the displacement- 
[17-201 and the stress-displacement hybrid- [21, 221 
based formulations. In heat conduction problems, 
also, the node-shifting technique [4] in calculating the 
intensity factor of the temperature gradient at the 
crack tip essentially serves the same purpose by an 
alternative bi-analytical approach. Implementation of 
the core element, however, is absolutely nontrivial 
even with an existing numerical code. The com- 
patibility between the core and the conventional 
elements and the characteristic value of r0 for the core 
radius in relation to the accuracy of the numerical 
solutions strongly depend on the way in which the 
local elements were assembled and the shape functions 
used for interpolations. Especially for the present 
problem with the nonlinear effect of inertia present, 
how much would the use of core elements improve 
the numerical accuracy and efficiency is still a research 
topic worthy of further study. 

According to Fourier’s law of heat conduction, a 
singularity in the temperature gradient existing at the 
wedge tip implies the existence of an intensified heat 
flux. In the present problem with heat transfer by 
natural convection, this depicts a situation of energy 
localization in the flow field which should be avoided 
for improving the overall performance of heat con- 
vection. In optimizing the thermal performance for 
natural convective loops, for example, the config- 
uration (geometry) with two adjacent walls exposed 
to temperature and flux-specified conditions (thermal 
loading) should be avoided, especially those with a 
blunt vertex angle with c( > n/2. This situation, as 
demonstrated by equation (32) and shown in Fig. 7, 
will be dramatically changed when the thermal con- 
ditions experienced by the wedge surfaces are differ- 
ent. In the latter case, with the presence of heat con- 
vection at the wedge surface, the thermal conductivity 
of the loop wall and the overall heat transfer co- 
efficient of the fluid (thermal properties) further inter- 
act with the geometrical factor of vertex angle CI in the 
evolution of energy localization and optimization of 
the thermal system becomes quite a complicated sub- 
ject matter of research. The over-simplified boundary 
conditions, equations (4) and (29), in this work are 
only employed for illustrating the existence of a singu- 
larity and consequently the energy localization. In 
modeling real situations in engineering systems, the 
boundary conditions may be much more complicated 
than those considered in this analysis and the per- 
formance curve of the system should involve all the 
physical factors in geometry, thermal loading, and 
thermal properties of the media. 

5. CONCLUSIONS 

An asymptotic analysis has been made to study the 
thermal and flow behavior in the vicinity of a wedge 
tip where discontinuities in geometry and physical 
boundary conditions are present. Generally speaking, 
the results obtained in this analysis for c( = n/2 could 
be applied to containers with right comers and those 
for c( = n could be applied to containers subject to 
partial heating on their boundaries. The analysis dem- 
onstrates that in the near-tip region with r approach- 
ing zero, the inertia effect in the flow field and the 
convective transfer by flow velocities in the thermal 
field are higher order effects in comparison with, 
respectively, the viscous and the conductive effects 
in the momentum and the energy equations. From a 
mathematical point of view, this decouples the flow 
velocity from the energy equation and an eigenvalue 
problem is rendered for determining the thermal field 
while a boundary value problem is rendered for deter- 
mining the flow field. The lowest eigenvalue resulting 
from the eigenvalue problem depicts the r-dependency 
of both the thermal and flow fields in the near-tip 
region. For the wedge subject to a temperature-speci- 
fied condition at the bottom surface (0 = 0) and a 
flux-specified condition at the top surface (0 = a), the 
temperature gradient presents a singularity only if the 
wedge angle TV is in the domain from n/2 to a. The 
power of singularity is (2a-n)/2a. For the same 
wedge surfaces subject to an energy-balance condition 
at the top, the singular behavior of the temperature 
gradient also depends on the thermal properties (the 
ratio of h/k) of the physical system. Equation (32) 
depicts the conditions under which the temperature 
gradient at the wedge tip becomes singular and Fig. 7 
displays such an envelope in terms of the ratio of 
h/k vs the wedge angle a. In the presence of a 
singularity of the temperature gradient at the wedge 
tip, generally speaking, the energy transfer through 
the top surface of the wedge reduces the magnitude of 
the power of singularity in comparison with the 
case subject to a gradient-specified condition. For the 
case of a = 3x/4 in Table 1, for example, the power 
of singularity of the temperature gradient at the wedge 
tip is l/3 for a flux-specified wedge surface while it is 
respectively 0.27515 and 0.11506 for the surface sub- 
ject to an energy balance condition with h/k = 0.1 and 
0.5. Besides, for natural convection problems con- 
sidered so far, the velocity and the vorticity vectors of 
the flow field are found to be bounded at the wedge 
tip. No singularity would be induced by the non- 
isothermal expansion of the fluid volume. 

To be noted is the fact that the singularity of 
the temperature gradient at the wedge tip is indeed 
contributed to by both geometrical and physical dis- 
continuities. For the same wedge subject to tempera- 
ture-specified conditions on both surfaces, O(a) = 
0, and O(0) = 0 for example, the same procedure 
will render a result of 1, (the lowest eigenvalue) equal 
to two for a nontrivial solution of O(0). The r-depen- 
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dency (A - 2) of the temperature gradient i”, at r = 0, 

therefore, is zero and there exists no singularity in 
the entire domain of the wedge angle ct although the 
abrupt change of geometrical curvature still exists at 
the wedge tip in this case. It is thus clear that the 
singular behavior of the temperature gradient at the 
wedge tip is a combined result of the geometrical 
configuration, thermal properties, and the way in 
which the physical system is thermally loaded. 

(U, = 0 and V = 0 [13]), the r-dependency can thus 
be determined from the eigenualue system governing 
the flow field and the modal response of temperature is 
consequently obtained by solving the boundary value 
problem represented by equation (39). Along with 

more general conditions considered in the wake region 
such as cavitation, this class of interesting problems 
wilt be discussed in the near future. 

For fluid passing over a flat plate with finite length, 
similar situations exist in the wake region adjacent to 
the trailing edge of the plate. By the same concept 
developed in this work, the momentum and energy 
equations in this case of force convection turn out to 
be 

1. 

2. 

~,~+(l/r)~~-u/r2+(l~r2)~“~-(2~r2)~~=0 

u,,+(l/r)u,-v/r2+(1/r2)2)~0+(2/r2)u~ =O, 

and 

(35) 

3. 

4. 

T,,+(llr)T,+(l/r*)T,, = --(~/&J{~{2]uf 
5. 

+ (uB/r+u/r)2] + [tdr-tv, --D/r]Z} 

+~{u,+ne/r+u/r)2), forr-+O (36) 
6. 

which are respectively in correspondence with equa- 
tions (9) and (12) derived previously. There are two 
special features behind equations (35) and (36). In the 
momentum equation (35), it indicates that the flow 
inertia and buoyancy force are lower order effects in 
comparison with the viscosity effects. In the energy 
equation (36), on the other hand, it indicates that the 
magnitude of energy dissipation due to fluid viscosity 
is equally weighted with respect to that of heat con- 
duction. Bearing this in mind and with the assistance 
of the product forms for ffow velocities shown in 
equation (6), the r-dependency of the temperature in 
the vicinity of the trailing edge of the plate can be 
derived as 2(R- l), i.e. 

7. 

8. 

9. 

10. 

11. 

12, 
T(r, 0) = r*@+ ‘)~(e)r(r), (37) 

and the corresponding equations to (13) and (14) are 

u,+[n(n+2)JU= 2V, 

v,,+[n(n+2)]V= -2u* (38) 

o,+f4(n+l)2]0 = -(K/~Cp)(~j2t(/Z+l)2U2 

13. 

14. 

15. 

16. 

17. 

for r -+ 0 (39) 

in the present case. Equations (38) and (39) appear 
to be counterparts of equations (13) and (14). The 
temperature in this case is decoupled from the momen- 
tum equation and the flow velocities are determined 
in an independent fashion rather than the temperature 
in the previous case. Subjected to the appropriate 
boundary conditions specified at the plate surface 
(U = V = 0 for example) and in the wake region 
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CARACTERISTIQUES DU COMPORTEMENT THERMIQUE ET DYNAMIQUE AU 
VOISINAGE DES DISCONTINUITES 

R&sum&-Une analyse asymptotique est appliquee pour etudier le comportement fondamental des champs 
de temperature et de vitesse au voisinage de l’arete d’un coin. On insiste sur les conditions physiques sous 
lesquelles le gradient de temperature devient singulier au sommet du coin. Ces conditions sont sensibles 
aux conditions thermiques imposees sur les faces du coin. Pour des problemes de convection naturelle, on 
trouve que les r-dependances des grandeurs du champ dans la region proche de l’arete sont determinees 
par le probleme de ualeurspropres pour le champ de temperature, tandis que les vitesses d%coulement sont 
dttermintes par un probleme de valeurs lit&es. La situation inverse existe pour les probltmes de convection 
for&e. Une discussion detaillee est donnte pour l’extension des solutions de proximite de l’arete aux 

probltmes plus compliques, en conjonction avec l’utilisation des methodes d’elements finis, 

WARME- UND IMPULSTRANSPORT IN DER UMGEBUNG VON DISKONTINUITATEN 

Zusammenfassung-In der vorliegenden Arbeit wird mit Hilfe einer asymptotischen Analyse das grund- 
legende Verhalten von Temperatur- und Geschwindigkeitsfeldern in der Umgebung einer Keilspitze 
untersucht. Besonderes Augenmerk gilt dabei den physikalischen Bedingungen, unter denen der Tem- 
peraturgradient des Striimungsfeldes an der Keilspitze singuliir wird. Es zeigt sich, da13 diese Bedingungen 
stark von den thermischen Bedingungen an der Keiloberflache beeinfluBt werden. Weiterhin zeigt sich 
bei Problemen der natiirlichen Konvektion, dal3 der Verlauf der FeldgrijBen in radialer Richtung in der 
Nlhe der Spitze durch das Eigenwert-Problem fur das Temperaturfeld bestimmt wird, wlhrend die 
Eigen-Zust%nde fur die Stromungsgeschwindigkeiten durch das Grenzwertproblem bestimmt werden. Fur 
erzwungene Konvektion ergibt sich die umgekehrte Situation. AbschlieBend wird die Miiglichkeit der 
Ausweitung der Lijsungen filr die Umgebung der Spitze auf kompliziertere Probleme unter Einbeziehung 

der Methode der finiten Elemente detailliert diskutiert. 

TEIIJIOBbIE H AHHAMH~ECKHE XAPAKTEPMCTMKM TEgEHHR B OKPECTHOCTH 
PASPbIBA HEI-IPEPbIBHOCTH 

AIWOTatsE%-C IIOMOIIWO aCHMIIToTIIgeCIor0 amuni3a riccnenyrorcn f#iymraMen-ranbri~e rennonhre H 
minahsmrecrnie xaparreptrcrnna o6reramin nepmn~bl runma. Oco6oe BHHMaMIe ynennercn nmratvrmrec- 
KHM ycnoeww,npa KOTO~~ TewxpaTypndi rpamreHT norm TeqeHHn y B~P~AH~I EJuIxia cTaHomiTcn 

CHHQ’JISlpHbM Hatieno,¶rOOtin 3aBEC5lTOTTeILIIOBbIXyCJIOBHi-i,HaJliWaehSbIX HalIOBepXHOCTH~IfHa. 

&u ecTec-rBeHHoi E~HB~KLWE nonyneao, -fro 3a~~cmoCTx napahfelpoa norm OT B~~HPEMM r B~JIH~H 

eep~e~rcnHHaHaxonarcaH3~~e~n3~~Haco~Be~bIe3Ha~eH~~ann rehmeparyprioro norm, 

n To npeh4n KaK co6cTeeHwre uxxosnisin mn cnopocreii TeYeHHn onpenennxwcn H3 peluermn rpaesofi 

3anasH. B cnygae BbmyazseHHofi KOHB~K~ Ha6ntonaeTcn 06paTHaK mamur. Dpaeonrrrcn ramxe 
nonpobaoe 06cyncnemre ~03~0x~ocr~ o606qeHEmperueIiti nnn 06nacra B~JIH~H ~epmarlbl K.miHa Ha 


